Title: Brainstem structural connectivity changes in isolated REM sleep behavior disorder by 7 Tesla MRI

Authors: María Guadalupe García-Gomar¹, Aleksandar Videnovic^{2,3}, Kavita Singh¹, Matthew Stauder², Laura D. Lewis¹, Lawrence L. Wald¹, Bruce R. Rosen¹, Marta Bianciardi^{1,3}

Affiliations:¹Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States, ²Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States, ³Division of Sleep Medicine, Harvard University, Boston, MA

Objective: To investigate brainstem structural connectivity changes in isolated REM-sleepbehavior-disorder (iRBD) patients using an in-vivo probabilistic brainstem nuclei atlas and 7 Tesla high angular resolution diffusion MR imaging.

Methods: <u>Data acquisition:</u> We performed 7 Tesla MRI, under IRB-approval, in 12 iRBD patients (age: 68 ± 1.6 yrs) and 12 controls (age: 66.3 ± 1.6 yrs). We acquired 0.75mm-isotropic T₁-weighted *MEMPRAGE* and 1.7mm-isotropic *spin-echo diffusion-weighted MRI*.

<u>Data analysis:</u> *a) Preprocessing:* We parcellated the root-mean-square MEMPRAGE image with Freesurfer. *b) Definition of seed and target regions:* We used as seeds the structural probabilistic atlas labels of 20 brainstem nuclei relevant for RBD¹⁻³ and as targets 197 cortical/subcortical regions (Freesurfer parcellations, brainstem nuclei¹⁻³ and spinal cord). *c) DTI-based connectivity analysis:* We performed probabilistic-tractography (iFOD2-MRtrix3) propagating 100,000 streamlines from each seed. We computed a "structural-connectivity-index" for each pair of seed-target masks (= fraction of streamlines propagated from seed reaching target). *d) Statistical analysis:* We averaged the "structural-connectivity-index" across subjects and Wilcoxon test was used to compare the differences between groups.

Results/Discussion: The structural connectome of brainstem nuclei relevant for RBD showed cross-sectional connectivity changes of 14 brainstem seeds mainly within the brainstem (Figure 1). We found impaired connectivity in iRBD between REM-on and REM-sleep muscle-atonia medullary areas⁴ (Figure 2). This agrees with animal studies showing decreased excitatory connectivity between REM-on regions and ventro-medullary nuclei, the latter projecting to spinal motoneurons, which generate muscle atonia during REM-sleep⁵. Interestingly, ponto-medullary brainstem nuclei, known to be involved in REM-atonia, showed decreased structural inter-connectivity, possibly related to an underlying neurodegeneration process. In contrast, mesopontine regions showed overall increased inter-connectivity, possibly indicating compensatory mechanisms.

Conclusion: Decreased structural connectivity between REM-on and medullary brainstem nuclei underlies REM-sleep muscle-atonia in iRBD patients.

Acknowledgements: NIH-NIA-R01AG063982; MGH-Claflin-Distinguished-Scholar; Mind-Brain-Behavior-Harvard-Faculty-Award; NIH-NIBIB-K01EB019474; NIH-NIBIB-P41EB015896.

References:

- 1) Bianciardi, M. et al. Brain Connectivity 5, 597-607(2015).
- 2) Bianciardi, M. et al. Neuroimage 170, 222-230(2018).
- 3) Singh, K. et al. Front. Neurosci. 13, 1425(2020).
- 4) Boeve, B. F. et al. Brain 130, 2770–2788(2007).
- 5) Valencia Garcia, S. et al. Nat Commun 9, 504(2018).

Figure 1. A) Structural tractography-based connectome of 20 brainstem nuclei relevant for RBD in controls (average structural-connectivity-index across 12 controls displayed). B) Statistically significant differences in structural connectivity between iRBD patients and controls (Wilcoxon test, p < 0.01, n = 12); note that, except for a significant link with the frontal cortex, alterations of connectivity pathways in iRBD occurred exclusively within brainstem nuclei. List of nuclei abbreviations: substantia nigra-subregion1 (SN1), substantia nigra-subregion2 (SN2), cuneiform nucleus (CnF), pedunculotegmental nucleus (PTg), laterodorsal tegmental nucleus- central gray of the rhombencephalon (LDTg-CGPn), pontine reticular nucleus oral part- pontine reticular nucleus nucleus (SubC), viscero-sensory motor nuclei complex (VSM), superior medullary reticular formation (sMRt), inferior medullary reticular formation (iMRt), periaqueductal gray (PAG), paramedian raphe nucleus (PMnR), median raphe nucleus (ROb) and raphe pallidus (RPa).

Figure 2. Diagram summarizing the structural connectivity changes in RBD human subjects in the present study. The RBD relevant nuclei/regions were color-coded based on their functions as previously reported.² Notably, decreased structural connectivity mainly occurred in ponto-medullary brainstem nuclei previously postulated to be involved in REM atonia, while increased connectivity was found in meso-pontine brainstem nuclei. Moreover, the direct pathway between SubC and the spinal cord was preserved, while the indirect pathway through the medullary reticular formation (sMRt, iMRt) displayed decreased connectivity.